Shiny
灯灯蓝 下载地址
Interact. Analyze. Communicate.
Take a fresh, interactive approach to telling your data story with Shiny. Let users interact with your data and your analysis. And do it all with R.


Shiny is an R package that makes it easy to build interactive web apps straight from R. You can host standalone apps on a webpage or embed them in R Markdown documents or build dashboards. You can also extend your Shiny apps with CSS themes, htmlwidgets, and JavaScript actions.
Shiny combines the computational power of R with the interactivity of the modern web.
Get Started See Gallery
  • 安卓灯蓝官网下载
Here is a Shiny app
沃课app下载 沃课 for Android v1.5.3.46 安卓版 下载-脚本之家:今天 · 沃课 for Android v1.5.3.46 安卓版,沃课app是一款专为学生群体精心打造的学习辅导APP,方便学生自主预习知识,复习巩固教学内容,真题练习扩展思维,同时还有各大名校精品课程学习,培养良好的自 …

Shiny comes with a variety of built in input widgets. With minimal syntax it is possible to include widgets like the ones shown on the left in your apps:

# Select type of trend to plot
selectInput(inputId = "type", label = strong("Trend index"),
            choices = unique(trend_data$type),
            selected = "Travel")

# Select date range to be plotted
dateRangeInput("date", strong("Date range"),
               start = "2007-01-01", end = "2017-07-31",
               min = "2007-01-01", max = "2017-07-31")
Displaying outputs is equally hassle-free:

mainPanel(
  plotOutput(outputId = "lineplot", height = "300px"),
  textOutput(outputId = "desc"),
  tags$a(href = "http://www.google.com/finance/domestic_trends",
         "Source: Google Domestic Trends", target = "_blank")
)
                  
Build your plots or tables as you normally would in R, and make them reactive with a call to the appropriate render function:

  output$lineplot <- renderPlot({
    plot(x = selected_trends()$date, y = selected_trends()$close, type = "l",
         xlab = "Date", ylab = "Trend index")
  })
                  
Want to find out how we built the Google Trend Index app shown on the left? See the next tab for the complete source code.

# Load packages
library(shiny)
library(shinythemes)
library(dplyr)
library(readr)

# Load data
trend_data <- read_csv("data/trend_data.csv")
trend_description <- read_csv("data/trend_description.csv")

# Define UI
ui <- fluidPage(theme = shinytheme("lumen"),
  titlePanel("Google Trend Index"),
  sidebarLayout(
    sidebarPanel(

      # Select type of trend to plot
      selectInput(inputId = "type", label = strong("Trend index"),
                  choices = unique(trend_data$type),
                  selected = "Travel"),

      # Select date range to be plotted
      dateRangeInput("date", strong("Date range"), start = "2007-01-01", end = "2017-07-31",
                     min = "2007-01-01", max = "2017-07-31"),

      # Select whether to overlay smooth trend line
      checkboxInput(inputId = "smoother", label = strong("Overlay smooth trend line"), value = FALSE),

      # Display only if the smoother is checked
      conditionalPanel(condition = "input.smoother == true",
                       sliderInput(inputId = "f", label = "Smoother span:",
                                   min = 0.01, max = 1, value = 0.67, step = 0.01,
                                   animate = animationOptions(interval = 100)),
                       HTML("Higher values give more smoothness.")
      )
    ),

    # Output: Description, lineplot, and reference
    mainPanel(
      plotOutput(outputId = "lineplot", height = "300px"),
      textOutput(outputId = "desc"),
      tags$a(href = "http://www.google.com/finance/domestic_trends", "Source: Google Domestic Trends", target = "_blank")
    )
  )
)

# Define server function
server <- function(input, output) {

  # Subset data
  selected_trends <- reactive({
    req(input$date)
    validate(need(!is.na(input$date[1]) & !is.na(input$date[2]), "Error: Please provide both a start and an end date."))
    validate(need(input$date[1] < input$date[2], "Error: Start date should be earlier than end date."))
    trend_data %>%
      filter(
        type == input$type,
        date > as.POSIXct(input$date[1]) & date < as.POSIXct(input$date[2]
        ))
  })


  # Create scatterplot object the plotOutput function is expecting
  output$lineplot <- renderPlot({
    color = "#434343"
    par(mar = c(4, 4, 1, 1))
    plot(x = selected_trends()$date, y = selected_trends()$close, type = "l",
         xlab = "Date", ylab = "Trend index", col = color, fg = color, col.lab = color, col.axis = color)
    # Display only if smoother is checked
    if(input$smoother){
      smooth_curve <- lowess(x = as.numeric(selected_trends()$date), y = selected_trends()$close, f = input$f)
      lines(smooth_curve, col = "#E6553A", lwd = 3)
    }
  })

  # Pull in description of trend
  output$desc <- renderText({
    trend_text <- filter(trend_description, type == input$type) %>% pull(text)
    paste(trend_text, "The index is set to 1.0 on January 1, 2004 and is calculated only for US search traffic.")
  })
}

# Create Shiny object
shinyApp(ui = ui, server = server)
Hosting and Deployment
Put your Shiny app on the web by using your own servers or RStudio's hosting service.

蓝 灯 专业版 还能用么

duokuai加速器  极光加速器PC官方网站  twitter用什么dns  回锅肉梯子  黑豹官网免费下载  有没有永久免费的vp加速器  佛跳墙2024官方首页